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Hamel flow of certain anisotropic fluids 

By F.  M. LESLIE 
Department of Mathematics, University of Newcastle upon Tyne 

(Received 2 September 1963) 

An exact solution is given for the flow in a convergent or divergent channel of 
a class of anisotropic fluids in which the Auid has a preferred direction. 

1. Introduction 
Ericksen (1960a) has formulated a properly invariant theory of anisotropic 

fluids in which he considered an incompressible fluid having at  each particle a 
single preferred direction. This direction, which is governed by the fluid motion, 
can vary throughout the Auid and with time. The Auid may be thought of as a 
suspension of particles which are bodies of revolution, the axis of revolution 
giving the preferred direction. 

Ericksen assumed that the stress at  a point is a function of the velocity 
gradients and the preferred direction at  that point. He used well-known in- 
variance principles to show that the stress tensor of the components of stress 
ti, (Cartesian tensor notation is used) is related to the velocity gradients and 
the preferred direction as follows: 

ti, = -p8ij+a,ninj+a,dij + a,dikdkj + a4(n,nkdkj +njnkdki) 

+ a5(ninkdkmdmj f njnkdkmdmi)* ( '1 
where p is a scalar function of the space variables and time, Sij the Kronecker 
delta, ni the unit vector giving the preferred direction and dij  the rate of strain 
tensor. If the velocity vector is vi, Sdij = v ~ , ~  + v ~ , ~ .  The a's are functions of the 
invariants 

Ericksen also assumed that the material derivative of the preferred direction is 
a function of the velocity gradients and the preferred direction. He used standard 
invariance procedures to obtain the equation 

nin,, dijnini, dik &pinj, dii di j ,  dikdkj dji .  (2) 

ni = uiinj+/3,(dijnj -djknjnkni) +P3(dikdkjnj -dkmdmjnknjni), (3) 

where ni is the material derivative of the unit vector n, and 2uii = vi, - v ~ , ~ .  
The p's are functions of the invariants (3) .  

Ericksen simplified the above equations by considering the case when they 
are linear in the rate-of-strain tensor dij. Equations (1)  and (3) reduce to 

t . .  a)  = -pSij+ 2,udij+ (/~1+/~2dlcmnkn,)nini+ 3,u3(djenkni+diknknj), (4) 

and ni = w t j  nj + A( dii nj - dk j  nk nj ni) , ( 5 )  
38-2 
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where h and the p’s are constants. In  the absence of body forces, the equations 
of motion are 

where p is the density of the fluid. Since the fluid is incompressible, the continu- 
ity equation takes the form 

dii = 0. (7 )  

Subsequently Ericksen (19606, 1960c, 1962) gave a more general theory and 
considered various aspects of it. Hand (1962) and Green (1964) have also given 
theories of anisotropic fluids. 

Exact solutions of the equations (4)-(7) have been given by Ericksen (1960cc, 
1961) for simple shear flow and Poiseuille flow and by Verma (1962) for Couette 
flow. In  order to obtain steady solutions of those equations only values of the 
parameter h such that Ihl > 1 were considered. 

If the fluid is at  rest (or is undergoing rigid-body motions), the components 
of the tensor dii are zero and the stress components are given by 

t . .  21 = -p6ij+,uu,ninj. 

In  general this is not a hydrostatic pressure and the fluid at  rest sustains a shear 
stress. Thus constitutive equations with non-zero p, describe materials of the 
Bingham type (cf. Ericksen 1961). Here constitutive equations with p1 zero are 
considered. 

An exact solution which has aided the understanding of the behaviour of 
Newtonian fluids is that by Hamel (see Goldstein 1938) for flow in a convergent 
or divergent channel. A similar exact solution is given below for anisotropic 
fluids with constitutive equations (4) and (5) (with p1 = 0). The problem reduces 
to the solution of two ordinary differential equations, and, as an example, these 
are integrated numerically in a special case. It is found that there are two solu- 
tions which satisfy the necessary boundary conditions. Following Ericksen’s 
arguments with regard to stability in which perturbations of the vector ni are 
considered while the velocity remains unperturbed, one of these solutions appears 
to be stable and the other unstable. However, this question is not investigated 
in greater detail here. 

Solutions of equations (4)-(7) are readily found for the flow between plane 
parallel walls. The solution which appears to be stable has a discontinuity in the 
preferred direction across the plane of zero shear midway between the walls. 
It is thought of interest t o  compare this solution with that for flow in a channel 
of very small angular gap. Accordingly the equations are again integrated in a 
special case when the walls are almost parallel. In  the stable solution obtained 
there is rather an abrupt change in the preferred direction in the centre of the 
channel in good agreement with the solution for flow between parallel walls. 

2. The solution for flow in a convergent or divergent channel 
All tensor quantities are expressed in terms of their physical components in 

cylindrical polar co-ordinates (r ,  6,  z )  which are chosen so that the walls of the 
channel coincide with the planes I9 = & O,, where 0, is a constant. 
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Solutions are examined in which the velocity is of the form 

v , = r-1 f(@, 0, = v, = 0, 

and in which the preferred direction is given by 
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n, = cos$, no = sin$, n, = 0, 

where # is a function of 8. The non-zero components of the rate of strain and 
rotation tensors are 

d,, = -fir2 2 a,, =flr2, 

d,, = d,, = f ’ /2 r2 ,  w,& = - w,, = f ’ /2 r2 ,  

where an accent denotes differentiation with respect to 8. Equation (4) gives the 
stress components 

t,, = - p  + ( l/r2) [ - 3,uf+,u20 cos2 # +,u3(f‘sin 2# - 4fcos2 $)I, 
t,, = -p+(l/r2)j2~~f+yzOsin2#+p3(flsin2$+4fsin2#)], 

t,, = ( l /r2)  [ (~~++3) f ’+ ,u ,Os in~cos#I ,  

t,, = - p  , t,, = t,, = 0, 

where O = +ffsin3#-fcos3#. 

The angle c j  is found in terms of the fluid motion from equation (6) which reduces 
t o  

At the walls where f is zero on account of the no-slip condition 

f ’ (  1 - h cos 2 4 )  = 3hfsin 2 4 .  ( 8 )  

cos2# = l/h. (9) 

As in earlier work only values of h such that Ihl > 1 are considered. 

independent of x ,  the equations of motion become 
Since v, is the only non-vanishing component of velocity and the solution is 

and 

From equation (1 I) the pressure is given by 

p = k ( r )  + ( l / r 2 )  [2pf+p20 sin # +,u3(f’sin 39 + 4fsin2#)], 

where k ( r )  is an arbitrary function of the variable r .  Equation (10) reduces to 

(p  +p3 + 4p2 sin2 2$)f”  - 4(p2 sin 4#)f’ + 4(p2 sin 4#)f’$’ 

- ( ru2cos4$) f$ ‘+4(p++3+~p2~os22$) f+pf2 = p, (is) 
and k ( r )  = p ,  -P /2r2 ,  

where p ,  and /3 are constants. The boundary conditions are 

f(@,) = 0, f ( -80) = 0, 

and 2$(8,) = cos-1 ( l / A ) ,  2$( - 8,) = cos-l( l/h). 
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FIGURE 1. The angle 4 as a function of 0 for the two solutions, a and b, 

when 0, = 0.5 rad and p+p3 = 2p2, h = 2, /3 = 2*5(p+,@/p. 

0 

FIGURE 2. The velocity profiles - 2pr23J(p + pa) for the two solutions, 
a and b, when 0, = 0.5 rad and p+p3 = 2p2, h = 2, /3 = 2.5(p+p3)2/p. 
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FIGURE 3. ( a )  Solution a (a and b correspond to the relevant $ solutions in figure 1) : ++ 
velocity vector, +- preferred direction. ( b )  Solution b :  ++- velocity vector, 
+-- preferred direction. 

As an example equations (8) and (13) are integrated on a computer subject to 
the boundary conditions (1  3) when 

p + p 3  = 3pz, h = 3, 
/3 = 3 * 5 ( , ~ ~ + p ~ ) ~ / p  and 8, = 0.5rad. 

The results are shown in figures 1-3. Two solutions are found corresponding to 
the two values of q5 given by equation (9). It should be noted that the theory 
does not distinguish between the vectors ni and - ni for the preferred direction, 
i.e. between the angles $ and q5 i 7 ~ .  In figure 1 the functions q3 are given for solu- 
tion a in which Q is at  8 = 0.5 rad, and for solution b in which Q is $ 7 ~  at 8 = 0.5 
rad. In  figure 3 the velocity profiles are given. The solutions are illustrated 
diagrammatically in figure 3 by drawing the velocity and preferred direction 
vectors at  a series of points at a fixed radial distance. In  solution a the angle 
between the preferred direction and the velocity vector decreases from a maxi- 
mum at the walls to zero at  the centre of the channel. In  solution b the angle 
between the preferred direction and the velocity vector increases from a minimum 
at the wall to 47~ at the centre. Both solutions are symmetrical about the plane 

To examine the sensitivity of those solutions to the parameter p2/(p+pu,) a 
secondintegrationis performed whenh,Pand@, areunchanged but 3p2 = 5(p + p,). 
Two solutions are again found similar to those above. The corresponding values 
of q5 show little change (of order 1 %) while the velocity profiles are reduced by 
a factor of 10 % in solution a and 30 yo in solution b. Comparison with the corre- 
sponding solution for a Newtonian fluid of viscosity ,u shows that the velocity 
profiles are similar to the Newtonian profile but smaller by a factor of about 
one-half. 

When analysing simple shear flow, Ericksen found more than one solution 
but discarded all but one on the grounds of a simple stability argument in which 

8 = 0. 
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he allowed perturbations in the vector ni while the velocity vector remained 
unperturbed. Following this procedure for small perturbations the solution a 
is found to be stable and solution b unstable. 

3. Comparison with flow between parallel walls 
Solutions are obtained for equations (4)-( 7) for the flow between parallel walls. 

Cartesian co-ordinates (x, y, z )  are chosen such that the walls coincide with the 
planes y = h where h is an arbitrary constant. Solutions are examined in which 
the velocity has the form 

and the preferred direction is given by 
v, = g(y), vy = v, = 0, 

n, = C O S ~ ,  ny = sin$, n, = 0, 

where 4 may vary with y. From equation (4) 

t,, = -p+g'sinQcos~(2,u,+,u2cos2Q), 
t,, = - p  + g' sin Q cos $(%,us +p2 sin2$), 

tsy = g'(p + p3 + p2 sin2 $ cos 2+), 

t 263 = - p  , tZZ = t ,  = 0)  

g' sin Q( 1 - h cos 24) = 0, 

where an accent denotes differentiation with respect to y. Equation (5) reduces 
to 

If g' =# 0, cos 24 = l/h, giving two possible values of $. When h > 1, the stable 
solution appears to be 

4 = +cos-l(l/h), 0 < q5 < $7 if g' > 0, 

+ = +cos-1(l/h), irr < Q < rr if g' < 0, 

g' cos $( 1 - h cos 24) = 0. 

and when h < - 1, 

Q = + c0s-l (l/h), in < q5 < ti. if g' < 0, 

Q = +cos-'(l/h), < Q, < ii. if g' > 0. 

The equations of motion and the boundary conditions are satisfied by 
p = p,, - Px + g' sin q5 cos $( 2,u3 +,.us sin2 $), 

and g(y) = P(h2- y2)/%(p+rUs+p2sin24cos2Q), 

where P and p,, are constants. At y = 0, g' changes sign, and thus there is a dis- 
continuity in Q at  that point. However, v,, tuz, tug and t,, are all continuous 
across y = 0. 

As 0, tends to zero one feels intuitively that the solution for flow in the con- 
vergent or divergent channel must approach the solution for flow between 
parallel walls. Indeed for a Newtonian fluid this can be shown to be the case 
analytically. Consequently a second integration of equations (8) and (12) with 
boundary conditions (1  3) is performed in the special case 

p+p, = 2p2, h = 2. 

p = %(p + , ~ ~ ) ~ / p ,  and 8, = 0.05 rad. 
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Two solutions are found similar to those obtained in the previous section. The 
values of q5 are shown in figure 4 and it can be seen that there is a rapid change in 
value near the centre of the channel. The velocity profiles are found to be very 
closely parabolic. Again the solution where q5 is &r a t  8 = 0.05rad appears to 
be the stable solution and this is in good agreement with the solution given above 
for flow between parallel walls. 

I I I 
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FIGURE 4. The angle q5 as a function of 0 for the two solutions, a and b, 
when 0, = 0.05rad and ,u+,u3 = 2 , 4 ,  h = 2, /3 = 2 5 ( , ~ + , u ~ ) ~ / p .  

The author is indebted to Dr K. Wright of the Computing Laboratory of the 
University of Newcastle upon Tyne for his help with the numerical integration 
of equations (8) and (12) and to Professor A. E. Green for drawing his attention 
to this topic. 
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